Tubulin is the endogenous inhibitor of the glyceraldehyde 3-phosphate dehydrogenase isoform that catalyzes membrane fusion: Implications for the coordinated regulation of glycolysis and membrane fusion.

نویسندگان

  • Paul E Glaser
  • Xianlin Han
  • Richard W Gross
چکیده

Previously we demonstrated that specific chromatographically resolvable isoforms of rabbit brain GAPDH catalyze either glycolytic flux or membrane fusion activity (but not both). Moreover, GAPDH membrane fusion activity was latent until it was separated from an endogenous cytosolic inhibitor by anion-exchange chromatography. Herein we demonstrate that the cytosolic inhibitor is nondialyzable, heat-labile, and trypsin-sensitive, thereby identifying it as a cytosolic protein constituent. Chromatographic purification of the rabbit-brain cytosolic protein inhibitor of GAPDH isoform-catalyzed membrane fusion identified a predominant 55-kDa doublet that contained an internal 15-aa peptide identical to a sequence present in alpha-tubulin (residues 65-79). The identity of the 55-kDa doublet as tubulin was substantiated through Western blot analysis and inhibition of GAPDH-catalyzed membrane fusion by authentic tubulin. Stopped-flow kinetic analysis demonstrated the high-affinity, rapid, and direct modulation of GAPDH-catalyzed fusion activity by tubulin. Because GTP-activated Rab 2 recruits GAPDH to membranes about to undergo fusion [Tisdale, E. J. (2001) J. Biol. Chem. 276, 2480-2486] and protein kinase Ciota/lambda phosphorylates GAPDH modulating its interactions with tubulin [Tisdale, E. J. (2001) J. Biol. Chem. 277, 3334-3341], the present study suggests a coordinated mechanism through which membrane trafficking and cellular signaling can be integrated with glycolytic flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis....

متن کامل

O-8: Molecular Mechanisms of Membrane Fusion Involved in Fertilization

Background: Assisted fertilization procedures are a currently widespread practice to regulate reproduction in humans and animals. The arising question is why the human being manipulating gametes to generate new individuals, if we do not understand yet the molecular mechanism of fertilization?. Successful completion of fertilization in mammals is dependent on three membrane fusion events: 1. the...

متن کامل

A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase are enzymes essential for glycolysis and gluconeogenesis. Dinoflagellates possess several types of both GAPDH and enolase genes. Here, we identify a novel cytosolic GAPDH-enolase fusion protein in several dinoflagellate species. Phylogenetic analyses revealed that the GAPDH moiety of this fusion is weakly related to a cytosolic GAPDH ...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 22  شماره 

صفحات  -

تاریخ انتشار 2002